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One fast simulation method using Markov chains was introduced to simulate angular, energy, and temporal
characteristics of pulsed laser beam propagation underwater. Angular dispersion of photons with a different
number of collisions was calculated based on scattering function and the state transition matrix of Markov
chains. Temporal distribution and energy on the receiving plane were obtained, respectively, by use of a novel
successive layering model and receiving ratio. The validity of this method was verified by comparing it with the
Monte Carlo ray tracing (MCRT) method. The simulation results were close to those obtained by MCRT but
were less time consuming and had smoother curves.
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The underwater optical wireless communication (UOWC)
system makes use of the blue–green wavelength of the vis-
ible spectrum and provides higher data rates than the tra-
ditional acoustic communication system with significantly
lower power consumption over moderate distances[1].
However, the communication performance of the UOWC
system depends on the inherent optical properties of
water. As water is a kind of multiple scattering medium
with intense absorption, when a pulsed laser beam prop-
agates underwater, absorption and scattering will cause
angular and temporal spreading, as well as energy attenu-
ation. The temporal spreading, resulting from angular
dispersion, limits the reachable data rate, and the energy
attenuation limits the range and distance of communica-
tion. Thus, for a UOWC system, it is important and
necessary to study the performance of a pulsed laser
beam through an underwater optical channel. So far,
the Monte Carlo ray tracing (MCRT) method[2–8] has been
widely used to simulate pulsed laser beam propagation
underwater. MCRT is simple to understand and easy to
program. Especially, MCRT has been proved to be a re-
liable method and be in good agreement with experimen-
tal results[9–12]. However, the MCRT method needs a long
execution time, and the precision is limited by the number
of simulated photons.
In this Letter, we firstly introduce Markov chains into

the simulation of pulsed laser beam propagation under-
water. Using the state transition matrix, angular distribu-
tion of photon packets after collision can be easily
obtained, as it is only related to the state before the colli-
sion[13]. In addition, according to the distribution of the
number of collisions and the proposed concept of receiving
ratio, we can quickly obtain the energy on the receiving
plane. As the state transition matrix can only be used

to describe memoryless procedures, but the total propaga-
tion delay of one photon packet after multiple scattering is
related to the whole propagation path, it is difficult to
directly use Markov chains to simulate the temporal dis-
tribution of laser pulses on the receiving plane. So, we pro-
pose a novel successive layering model to make the
Markov chains available for the simulation of temporal
distribution of laser pulses. Compared with the MCRT
method, the angular distribution after collisions, the en-
ergy, and the temporal distribution on the receiving plane
simulated by Markov chains have similar results with a
higher calculation rate by about two orders of magnitude
and a smoother curve. The main reason is that, different
from brute-force tracing used in MCRT, Markov chains
are based on matrix operation.

The parameters, which relate to pulsed laser beam prop-
erties after underwater propagation, mainly include ab-
sorption coefficient a, scattering coefficient b, attenuation
coefficient c ðc ¼ a þ bÞ, albedo ω̄ ðω̄ ¼ b∕cÞ, and asym-
metric parameter g. References [14–16] systematically
introduced the influences of those parameters and pro-
vided a set of data for reference. When a photon undergoes
scattering underwater, the Mie theory is available to
describe the probability distribution of the scattering
angle, provided that the size distribution of scattering
particles underwater is known. In simulation, the Henyey–
Greenstein (HG) scattering function[17] and Fournier–
Forand scattering function[18] have been widely adopted
for consistency with experimental data. In this Letter,
we select the HG scattering function for its simpler form.
The HG scattering function is given by

PðθÞ ¼ 1-g2

2πð1-2g cos θ þ g2Þ3∕2 ; (1)
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where θ (ranges from 0 to π) denotes the intersection angle
between directions before and after collisions. If setting a
local coordinate system that the propagation direction of a
photon before scattering is the Z axis, θ also denotes the
polar of the photon after scattering. The only variable in
Eq. (1) is g, which is the average value of cos θ. Note that,
due to symmetry, the azimuthal scattering angle φ is uni-
formly distributed over the interval (0–2π). Thus, we just
consider the effect of polar angle θ, and the angular dis-
tribution also just refers to θ.
In MCRT, the transmitted laser pulse is treated as a

series of photon packets with energy[5]. The interaction
of the laser pulse and medium is regarded as collisions be-
tween photons and particles, resulting in a change of en-
ergy and the propagation direction of the photons. Similar
to MCRT, we also treat the absorption and the scattering
of laser pulse propagation underwater as a collision pro-
cedure between photons and particles. The photons’ en-
ergy decay and their directions after collisions follow
the HG scattering function. We also use the same termi-
nology adopted in MCRT, such as photons and collisions.
When Markov chains are used to calculate angular dis-

tribution, the polar angle θ should be discredited firstly.
We equally divide θ into N parts, with an interval of
π∕N . In this Letter, the variable N is set as 500, since sim-
ulation results show that further increasing N cannot ob-
viously improve simulation precision but significantly
increases computation time. Thus, the angular distribu-
tion of a photon can be uniquely denoted by an N × 1
matrix. According to the HG scattering function, we
can form an N × N matrix MT , i.e., the state transition
matrix, to transform the angular distribution before
collision to that after collision. The element MT ðj; iÞ
denotes the probability of a photon with a polar angle
θ¼ θi ½ði− 1Þ× π∕N ≤ θi < i× π∕N ; i ¼ 1;2; …; N ], which
scatters to the polar angle θ ¼ θj

�ðj − 1Þ× π∕N ≤
θj < j × π∕N ; j ¼ 1; 2; …; N

�
after collision. Note that,

the state transition matrix refers to the global coordinate
system (i.e., the initial laser pulse propagation direction
is the Z axis, and the location laser pulse transmitted into
water is original spot), and the HG scattering function
refers to the local coordinate system (i.e., the propagation
direction of a photon before collision is the Z axis). We
should change the propagation direction of a photon
after collision to the global coordinate system when gen-
erating the state transition matrix. So,

MT ðj; iÞ ¼
Zj×π∕N

ðj−1Þ×π∕N

dθ
Z2×π

0

1− g2

2π
1
T
sin θ
2

dφ; (2)

where T¼�
1−2g

�
sinθ·cosφ·sinθiþ cosθ·cosθi

�þg2
�
3∕2.

Figure 1(a) shows the state transition matrix MT . It
can be seen that the forward scattering is obvious
with the elements MT ðj; iÞðj ¼ iÞ obviously larger than
MT ðj; iÞðj ≠ iÞ. Figure 1(b) shows the state transition
matrix, raised to the 15th power M15

T . It is clear that the

angular probability of a photon with the number of colli-
sions of nc ¼ 15 tends to be identical no matter what the
initial propagation direction is. The results coincide with
Ref. [13].

Using the state transition matrix, it is convenient to
calculate the angular distribution of a photon with an
initial propagation direction along the Z axis and with
the number of collisions nc ¼ k,

Pðθjnc ¼ kÞ ¼ MT
k ·Mi ; (3)

where Mi ¼ ½1; 0;…; 0�0 denotes the initial angular distri-
bution of the photon, which propagates along the Z axis.
Figure 2 shows the angular distribution of a photon with
the numbers of collisions of 1, 5, 15, and 30, respectively.
The results are compared with those obtained by MCRT.
From Fig. 2, it can be concluded that: (1) the results ob-
tained by the state transition matrix are close to those by
MCRT; (2) the results obtained by state transition matrix
are smooth, but those by MCRT have obvious random-
ness with many fluctuations (the number of traced pho-
tons is one million); (3) as the number of collisions
increases, angular distribution tends to the sine function,
which stands for totally diffuse light. It should be pointed
out that the MCRT is time-consuming, with the compu-
tation time about two orders of magnitude longer than
that using the state transition matrix.

Fig. 1. State transition matrix of water. (a) State transition ma-
trixMT . (b) State transition matrix raised to the 15th powerM15

T .

Fig. 2. Normalized angular probability distribution for increas-
ing number of collisions nc.
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Similar to the procedures in MCRT to calculate energy
by accumulating the residual energy (due to collision, the
photon energy decays) of all photons, which arrive at the
receiving plane (due to collision, a portion of photons
cannot reach the receiving plane) one by one, we can also
obtain the energy on the receiving plane through accumu-
lation by using Markov chains. The difference is that, in-
stead of accumulating energy of the individual photon, we
divide the photons into different parts according to nc and
sum up the residual energy of all parts. The procedures are
as follows: (1) according to nc, we divide the photons into
a series of parts. The probability of nc ¼ k is denoted by
the variable Pðnc ¼ kjDT ¼ LÞ, in which DT ¼ L denotes
the transmission distance. (2) We calculate the receiving
ratio Rðnc ¼ kÞ, as there are certain probabilities that the
photons cannot reach the receiving plane due to collisions.
In addition, the energy of a photon decays with a ratio of
albedo ω̄ after collision. (3) Accumulating the residual
energy of all the parts, we can obtain the final energy
on the receiving plane, with a transmission distance DT .
To obtain the total energy of all photons arriving at

the receiving plane with a certain distance away from the
original spot, three parameters are needed; namely, the
distribution of the number of collisions Pðnc¼kjDT ¼LÞ,
the receiving ratio Rðnc ¼ kÞ, and the albedo ω̄. In gen-
eral, Pðnc ¼ kjDT ¼ LÞ is regarded as Poisson distribu-
tion with a mean of optical depth τ[6,7,9],

Pðnc ¼ kjDT ¼ LÞ ¼ τk

k!
expð−τÞ; (4)

with

τ ¼ Lc ¼ Lða þ bÞ; (5)

whereas Eq. (4) is available with the condition of g ¼ 1,
namely, completely forward scattering. We can still get
satisfactory results when forward scattering is intense
and optical depth is small. The receiving ratio is defined
as the sum of the probability of photons with polar angle
0 ≤ θ < π∕2, namely

Rðnc ¼ kÞ ¼
XN∕2

j¼1

Pðθ ¼ θj jnc ¼ kÞ: (6)

Figure 3 shows the normalized probability distribution
of the number of collisions for increasing transmission
distance DT , namely, Pðnc ¼ kjDT ¼ LÞ, where “MCRT”
stands for the distributions of photons arriving at the
receiving plane obtained by MCRT, “Poisson” stands
for Poisson distribution shown in Eq. (4), and “Markov”
stands for the product of Markov chains with receiving ra-
tioRðnc ¼ kÞ. It is seen that the distributions of “Markov”
are close to those obtained by MCRT. Meanwhile, when
transmission increases, the differences within these curves
begin to increase.

Finally, the energy of photons arriving at receiving
plane is

ER ¼
X30
k¼1

ERPðnc ¼ kjDT ¼ LÞ; (7)

where ERPðnc ¼ kjDT ¼ LÞ denotes the energy of the part
with nc ¼ k, and

ERPðnc ¼ kjDT ¼ LÞ ¼ Pðnc ¼ kjDT ¼ LÞRðnc ¼ kÞω̄k :

(8)

We set a, b, and c from Table 1, and g ¼ 0.93 in this
Letter. The water parameters of Jerlov IB typically corre-
spond to clean water, and those of pool water were gained
from actual measurement by the absorption-attenuation
spectra (ACS), corresponding roughly to costal water[14,15].

We just consider the photons with the number of colli-
sions less than 30, because the contributions of the pho-
tons with the number of collisions larger than 30 can be
negligible due to the presence of ω̄k . Figure 4 shows the
energy on the receiving plane versus transmission distance
DT , where ET denotes the initial energy of the transmit-
ted laser pulse. It is seen that the results obtained by
MCRT and Markov chains are roughly identical under
both Jerlov IB and pool water, which shows that the
Markov chain approach is effective.

Since the angular distribution and the energy obtained
by Markov chains are close to those by MCRT, it deserves
to be discussed as to whether we can use Markov chains to
obtain the temporal distribution of laser pulses on the

Fig. 3. Normalized probability distribution of the number of col-
lisions nc for increasing transmission distance DT .

Table 1. Water Parameters

Water Parameter a ðm−1Þ b ðm−1Þ c ðm−1Þ ω̄

Jerlov IB 0.060 0.084 0.144 0.58

Pool water 0.117 0.182 0.299 0.61
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receiving plane. It is difficult to analyze the temporal
distribution directly using the state transition matrix of
Markov chains because the angular distribution is only re-
lated to the state before collision and has nothing to do
with the further earlier states, while temporal distribution
needs the total propagation delay from the photon to be
transmitted into water until it arrives at the receiving
plane. Since the propagation distance of a photon between
two consecutive collisions is random, it is hard to calculate
the total propagation delay.
To solve this problem, referring to the method used to

calculate energy in the previous section, we proposed a
novel model, which is named the successive layering
model. Next, we introduce, in detail, the procedures to
calculate the temporal distribution on the receiving plane
by using this model.
The calculation procedures include five steps. (1) Divide

the photons into 30 parts according to nc (nc ¼
0; 1;…; 29). (2) For photons with nc ¼ k, divide the trans-
mission distance DT ¼ L into k layers, which are parallel
to each other, following the principle that the collision
probabilities of the layers with the same equivalent depth
are the same. The equivalent depth is defined as
DL∕cosθðnc ¼ kÞ, in which DL denotes the depth of the
layer along with the Z axis, and cosθðnc ¼ kÞ denotes
the average direction cosine with nc ¼ k. cos θðnc ¼ kÞ,
is defined as

cosθðnc ¼ kÞ ¼
XN
j¼1

Pðθ ¼ θj jnc ¼ kÞ cosθ. (9)

Take the situation with the transmission distance
DT ¼ 40 m and the photons with nc ¼ 2 as an example.
Before the first and second collisions, the average direction
cosines are cos θðnc ¼ 0Þ ¼ 1 and cos θðnc ¼ 1Þ ¼ 0.93,
respectively. In order to satisfy the equation D21 þ D22 ¼
DT , where D21 and D22 are the depths of the first and the
second layer when nc ¼ 2, and D21∕cos θðnc ¼ 0Þ ¼
D22∕cosθðnc ¼ 1Þ, we set D21 ¼ 20.72 m and D22 ¼
19.28 m. In addition, we define the collision spot that is
located in the middle of each layer, i.e., the first collision
spot B is ZB ¼ 10.36 m, and the second collision spot C is
ZC ¼ 30.36 m. It should be pointed out that, according
to the simulation results, the relative collision location,
no matter if it is in the front, middle, or back of each

layer, has no obvious influence on the final temporal
distribution. Figure 5 shows the transmission procedures
of the photon with nc ¼ 2 by using the successive layering
model. The photon with nc ¼ 1 is also shown in Fig. 5, in
which A is the only collision spot. (3) According to the
obtained layer depth and angular distribution, calculate
transmission distance distribution in the layer. (4) For
the photon with nc ¼ k, convolute all of the k transmission
distance distributions obtained in each layer. Sub-
sequently, we can get the temporal distribution of the pho-
tons TDPðnc ¼ kjDT ¼ LÞ, with nc ¼ k and DT ¼ L.
(5) Sum up all of the distributions of photons with differ-
ent numbers of collisions according to the energy of each
part ERPðnc ¼ kjDT ¼ LÞ, and we finally obtain the tem-
poral distribution of all the photons TDðDT ¼ LÞ on the
receiving plane.

Figure 6 shows the comparisons of the temporal distri-
butions obtained by MCRT and Markov chains, with the
transmission distance of 20, 40, 60, and 80 m under Jerlov
IB water, respectively. The running time of the MCRT
method for 20, 40, 60, and 80 m is about 1562, 3164,
4751, and 6347 s, respectively. Meanwhile, the running
time of the less time-consuming Markov chains simulation
is 91 s. It is seen that the results obtained by these two
methods are very close when the transmission distance

Fig. 4. Energy loss on the receiving plane versus transmission
distance DT . (a) Jerlov IB: a= 0.06 m−1, b= 0.084 m−1. (b) Pool
water: a= 0.117 m−1, b= 0.182 m−1.

Fig. 5. Transmission procedures of the successive layering
model, nc ¼ 1 and nc ¼ 2.

Fig. 6. Temporal distributions of different transmission
distances. (a) DT ¼ 20 m, (b) DT ¼ 40 m, (c) DT ¼ 60 m,
(d) DT ¼ 80 m.
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is less than 60 m. As is shown in Fig. 6(d), the temporal
distribution obtained by Markov chains has a sharper
peak and a slower falling edge. The difference between
the two curves in Fig. 6(d) mainly comes from the differ-
ence of distributions of the number of collisions between
Markov chains and MCRT (as shown in Fig. 3). With
the increase of transmission distance, the differences of
these distributions of the number of collisions increase,
which leads to the difference of temporal distributions.
The other reason is the simplicity of the successive layer-
ing model with very few layers.
Though Markov chains have many advantages in the

simulation of laser pulses propagation underwater, it still
has some drawbacks, such as difficulty to understand and
complexity to program. In addition, the energy and spatial
distribution in the telescope with a certain field of view
and a certain receiving aperture were not investigated
yet. Further studies are needed to complete the use of
Markov chains in the simulation of laser pulses propaga-
tion underwater.
In conclusion, by using Markov chains, we proposed a

new method to simulate the characteristics of laser pulse
propagation underwater, including angular distribution of
photons with a certain number of collisions, the energy,
and the temporal distribution on the receiving plane.
To simulate temporal distribution, we proposed one novel
successive layering model. The results obtained are close
to those obtained by MCRT, where they are less time-
consuming and have smoother curves. The validity of the
method is also verified by experimental results of the pool
test. The proposed method combines the advantages of
both MCRT and moments technique[19] and provides in-
sights into the field of pulsed laser beam propagation in
a multiple scattering medium. Meanwhile, as a newly pro-
posed method, further improvement is needed.

The authors thank Dr. Xiuhan Hu and Dr. Siqi Hu for
contribution to this work. We also wish to acknowledge

the structure design provided by Yuxin Deng and
Zhengyang Jiang. This work was supported by the Stra-
tegic Priority Research Program of the Chinese Academy
of Sciences (No. XDA22000000), the Ministry of Science
and Technology of China (No. 2014AA093301), the
Laboratory for Regional Oceanography and Numerical
Modeling, Qingdao National Laboratory for Marine
Science and Technology (No. 2017B04), and the Natural
Science Foundation of Shanghai (No. 19YF1453600).

References
1. H. Kaushal and G. Kaddoum, IEEE Access 4, 1518 (2016).
2. G. C. Mooradian and M. Geller, Appl. Opt. 21, 1572 (1982).
3. K. I. Gjerstad, J. J. Stamnes, B. Hamre, J. K. Lotsberg, B. Yan, and

K. Stamnes, Appl. Opt. 42, 2609 (2003).
4. R. M. Lerner and J. D. Summers, Appl. Opt. 21, 861 (1982).
5. X. H. Hu, T. H. Zhou, Y. He, X. L. Zhu, andW. B. Chen, Proc. SPIE

8906, 89061A (2013).
6. W.Wei, X. H. Zhang, J. H. Rao, andW. B.Wang, Chin. Opt. Lett. 9,

030101 (2011).
7. S. Arnon, Proc. SPIE 7924, 79240D (2011).
8. H. C. van de Hulst and G. W. Kattawar, Appl. Opt. 33, 5820

(1994).
9. E. A. Bucher, Appl. Opt. 12, 2391 (1973).
10. E. A. Bucher and R. M. Lerner, Appl. Opt. 12, 2401 (1973).
11. R. A. Elliott, Appl. Opt. 22, 2670 (1983).
12. G. C. Mooradian, M. Geller, L. B. Stotts, D. H. Stephens, and R. A.

Krautwald, Appl. Opt. 18, 429 (1979).
13. Z. Hajjarian, M. Kavehrad, and J. Fadlullah, IEEE J. Sel. Area

Commun. 27, 1526 (2009).
14. S. Q. Hu, L. Mi, T. H. Zhou, andW. B. Chen, Opt. Express 26, 21685

(2018).
15. N. G. Jerlov, Marine Optics (Elsevier, 1976).
16. G. Mooradian, in Proceedings of IEEE Photonics Society Summer

Topical Meeting Series (2012), p. 71.
17. L. Henyey and J. Greenstein, Astrophys. J. 93, 70 (1941).
18. G. R. Fournier and J. L. Forand, Proc. SPIE 2258, 194 (1994).
19. A. Beskos, M. Girolami, S. W. Lan, F. E. Patrick, and S. M. Andrew,

J. Comput. Phys. 335, 327 (2017).

COL 17(10), 100003(2019) CHINESE OPTICS LETTERS October 2019

100003-5


